Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Nat Protoc ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702387

ABSTRACT

Single-molecule localization microscopy (SMLM) enables imaging scientists to visualize biological structures with unprecedented resolution. Particularly powerful implementations of SMLM are capable of three-dimensional, multicolor and high-throughput imaging and can yield key biological insights. However, widespread access to these technologies is limited, primarily by the cost of commercial options and complexity of de novo development of custom systems. Here we provide a comprehensive guide for interested researchers who wish to establish a high-end, custom-built SMLM setup in their laboratories. We detail the initial configuration and subsequent assembly of the SMLM, including the instructions for the alignment of all the optical pathways, the software and hardware integration, and the operation of the instrument. We describe the validation steps, including the preparation and imaging of test and biological samples with structures of well-defined geometries, and assist the user in troubleshooting and benchmarking the system's performance. Additionally, we provide a walkthrough of the reconstruction of a super-resolved dataset from acquired raw images using the Super-resolution Microscopy Analysis Platform. Depending on the instrument configuration, the cost of the components is in the range US$95,000-180,000, similar to other open-source advanced SMLMs, and substantially lower than the cost of a commercial instrument. A builder with some experience of optical systems is expected to require 4-8 months from the start of the system construction to attain high-quality three-dimensional and multicolor biological images.

2.
Sci Adv ; 10(7): eadl4876, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354250

ABSTRACT

The synaptonemal complex (SC) is a zipper-like protein assembly that links homologous chromosomes to regulate recombination and segregation during meiosis. The SC has been notoriously refractory to in vitro reconstitution, thus leaving its molecular organization largely unknown. Here, we report a moonlighting function of two paralogous S-phase kinase-associated protein 1 (Skp1)-related proteins (SKR-1 and SKR-2), well-known adaptors of the Skp1-Cul1-F-box (SCF) ubiquitin ligase, as the key missing components of the SC in Caenorhabditis elegans. SKR proteins repurpose their SCF-forming interfaces to dimerize and interact with meiosis-specific SC proteins, thereby driving synapsis independent of SCF activity. SKR-1 enables the formation of the long-sought-after soluble complex with previously identified SC proteins in vitro, which we propose it to represent a complete SC building block. Our findings demonstrate how a conserved cell cycle regulator has been co-opted to interact with rapidly evolving meiotic proteins to construct the SC and provide a foundation for understanding its structure and assembly mechanisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Synaptonemal Complex/metabolism
3.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961269

ABSTRACT

The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single molecule localization, aberration correction and deconvolution. Here we present uiPSF (universal inverse modelling of Point Spread Functions), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single molecule localization microscopy (SMLM). The resulting PSF model enables accurate 3D super-resolution imaging using SMLM. Additionally, uiPSF can be used to characterize and optimize a microscope system by quantifying the aberrations, including field-dependent aberrations, and resolutions. Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system or sample specific characteristics, e.g., the bead size, depth dependent aberrations and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single molecule blinking data.

4.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37756700

ABSTRACT

MOTIVATION: The nuclear pore complex (NPC) is the only passageway for macromolecules between nucleus and cytoplasm, and an important reference standard in microscopy: it is massive and stereotypically arranged. The average architecture of NPC proteins has been resolved with pseudoatomic precision, however observed NPC heterogeneities evidence a high degree of divergence from this average. Single-molecule localization microscopy (SMLM) images NPCs at protein-level resolution, whereupon image analysis software studies NPC variability. However, the true picture of this variability is unknown. In quantitative image analysis experiments, it is thus difficult to distinguish intrinsically high SMLM noise from variability of the underlying structure. RESULTS: We introduce CIR4MICS ('ceramics', Configurable, Irregular Rings FOR MICroscopy Simulations), a pipeline that synthesizes ground truth datasets of structurally variable NPCs based on architectural models of the true NPC. Users can select one or more N- or C-terminally tagged NPC proteins, and simulate a wide range of geometric variations. We also represent the NPC as a spring-model such that arbitrary deforming forces, of user-defined magnitudes, simulate irregularly shaped variations. Further, we provide annotated reference datasets of simulated human NPCs, which facilitate a side-by-side comparison with real data. To demonstrate, we synthetically replicate a geometric analysis of real NPC radii and reveal that a range of simulated variability parameters can lead to observed results. Our simulator is therefore valuable to test the capabilities of image analysis methods, as well as to inform experimentalists about the requirements of hypothesis-driven imaging studies. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/uhlmanngroup/cir4mics. Simulated data: BioStudies S-BSST1058.


Subject(s)
Microscopy , Nuclear Pore , Humans , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/analysis , Nuclear Pore Complex Proteins/metabolism , Single Molecule Imaging/methods , Software
6.
Sci Rep ; 13(1): 13327, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587192

ABSTRACT

Single molecule localization microscopy offers resolution nearly down to the molecular level with specific molecular labelling, and is thereby a promising tool for structural biology. In practice, however, the actual value to this field is limited primarily by incomplete fluorescent labelling of the structure. This missing information can be completed by merging information from many structurally identical particles in a particle fusion approach similar to cryo-EM single-particle analysis. In this paper, we present a data analysis of particle fusion results of fluorescently labelled Nup96 nucleoporins in the Nuclear Pore Complex to show that Nup96 occurs in a spatial arrangement of two rings of 8 units with two Nup96 copies per unit giving a total of 32 Nup96 copies per pore. We use Artificial Intelligence assisted modeling in Alphafold to extend the existing cryo-EM model of Nup96 to accurately pinpoint the positions of the fluorescent labels and show the accuracy of the match between fluorescent and cryo-EM data to be better than 3 nm in-plane and 5 nm out-of-plane.


Subject(s)
Artificial Intelligence , Nuclear Pore , Nuclear Pore Complex Proteins , Coloring Agents
7.
HardwareX ; 13: e00407, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875260

ABSTRACT

Modern microscopy relies increasingly on microscope automation to improve throughput, ensure reproducibility or observe rare events. Automation requires computer control of the important elements of the microscope. Furthermore, optical elements that are usually fixed or manually movable can be placed on electronically-controllable elements. In most cases, a central electronics board is necessary to generate the control signals they require and to communicate with the computer. For such tasks, Arduino microcontrollers are widely used due to their low cost and programming entry barrier. However, they are limiting in their performance for applications that require high-speed or multiple parallel processes. Field programmable gate arrays (FPGA) are the perfect technology for high-speed microscope control, as they are capable of processing signals in parallel and with high temporal precision. While plummeting prices made the technology available to consumers, a major hurdle remaining is the complex languages used to configure them. In this work, we used an affordable FPGA, delivered with an open-source and friendly-to-use programming language, to create a versatile microscope control platform called MicroFPGA. It is capable of synchronously triggering cameras and multiple lasers following complex patterns, as well as generating various signals used to control microscope elements such as filter wheels, servomotor stages, flip-mirrors, laser power or acousto-optic modulators. MicroFPGA is open-source and we provide online Micro-Manager, Java, Python and LabVIEW libraries, together with blueprints and tutorials.

8.
Science ; 379(6636): 1010-1015, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893247

ABSTRACT

Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.


Subject(s)
Cells , Kinesins , Microscopy, Fluorescence , Microtubules , Cells/chemistry , Cells/metabolism , Fluorescent Dyes/analysis , Kinesins/chemistry , Kinesins/metabolism , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Microtubules/chemistry , Microtubules/metabolism , Motion , Humans
9.
J Cell Biol ; 222(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36734980

ABSTRACT

Eukaryotic cells use clathrin-mediated endocytosis to take up a large range of extracellular cargo. During endocytosis, a clathrin coat forms on the plasma membrane, but it remains controversial when and how it is remodeled into a spherical vesicle. Here, we use 3D superresolution microscopy to determine the precise geometry of the clathrin coat at large numbers of endocytic sites. Through pseudo-temporal sorting, we determine the average trajectory of clathrin remodeling during endocytosis. We find that clathrin coats assemble first on flat membranes to 50% of the coat area before they become rapidly and continuously bent, and this mechanism is confirmed in three cell lines. We introduce the cooperative curvature model, which is based on positive feedback for curvature generation. It accurately describes the measured shapes and dynamics of the clathrin coat and could represent a general mechanism for clathrin coat remodeling on the plasma membrane.


Subject(s)
Clathrin-Coated Vesicles , Clathrin , Endocytosis , Cell Line , Cell Membrane/metabolism , Clathrin/metabolism , Clathrin-Coated Vesicles/metabolism , Eukaryotic Cells
10.
Nat Methods ; 20(3): 459-468, 2023 03.
Article in English | MEDLINE | ID: mdl-36823335

ABSTRACT

Single-molecule localization microscopy in a typical wide-field setup has been widely used for investigating subcellular structures with super resolution; however, field-dependent aberrations restrict the field of view (FOV) to only tens of micrometers. Here, we present a deep-learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit-based vectorial point spread function (PSF) fitter, we can fast and accurately model the spatially variant PSF of a high numerical aperture objective in the entire FOV. Combined with deformable mirror-based optimal PSF engineering, we demonstrate high-accuracy three-dimensional single-molecule localization microscopy over a volume of ~180 × 180 × 5 µm3, allowing us to image mitochondria and nuclear pore complexes in entire cells in a single imaging cycle without hardware scanning; a 100-fold increase in throughput compared to the state of the art.


Subject(s)
Deep Learning , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods
11.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36705601

ABSTRACT

Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.


Subject(s)
Kinetochores , Saccharomyces cerevisiae , Chromosome Segregation , Kinetochores/ultrastructure , Microtubules/genetics , Microtubules/metabolism , Mitosis , Spindle Apparatus/genetics , Saccharomyces cerevisiae/genetics
13.
Nat Methods ; 20(1): 139-148, 2023 01.
Article in English | MEDLINE | ID: mdl-36522500

ABSTRACT

Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present LocMoFit (Localization Model Fit), an open-source framework to fit an arbitrary model to localization coordinates. It extracts meaningful parameters from individual structures and can select the most suitable model. In addition to analyzing complex, heterogeneous and dynamic structures for in situ structural biology, we demonstrate how LocMoFit can assemble multi-protein distribution maps of six nuclear pore components, calculate single-particle averages without any assumption about geometry or symmetry, and perform a time-resolved reconstruction of the highly dynamic endocytic process from static snapshots. We provide extensive simulation and visualization routines to validate the robustness of LocMoFit and tutorials to enable any user to increase the information content they can extract from their SMLM data.


Subject(s)
Fluorescent Dyes , Single Molecule Imaging , Likelihood Functions , Fluorescent Dyes/chemistry
14.
Nat Commun ; 13(1): 3133, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668089

ABSTRACT

Multi-channel detection in single-molecule localization microscopy greatly increases information content for various biological applications. Here, we present globLoc, a graphics processing unit based global fitting algorithm with flexible PSF modeling and parameter sharing, to extract maximum information from multi-channel single molecule data. As signals in multi-channel data are highly correlated, globLoc links parameters such as 3D coordinates or photon counts across channels, improving localization precision and robustness. We show, both in simulations and experiments, that global fitting can substantially improve the 3D localization precision for biplane and 4Pi single-molecule localization microscopy and color assignment for ratiometric multicolor imaging.


Subject(s)
Nanotechnology , Single Molecule Imaging , Algorithms , Nanotechnology/methods
15.
Nat Commun ; 13(1): 3362, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690614

ABSTRACT

Modern implementations of widefield fluorescence microscopy often rely on sCMOS cameras, but this camera architecture inherently features pixel-to-pixel variations. Such variations lead to image artifacts and render quantitative image interpretation difficult. Although a variety of algorithmic corrections exists, they require a thorough characterization of the camera, which typically is not easy to access or perform. Here, we developed a fully automated pipeline for camera characterization based solely on thermally generated signal, and implemented it in the popular open-source software Micro-Manager and ImageJ/Fiji. Besides supplying the conventional camera maps of noise, offset and gain, our pipeline also gives access to dark current and thermal noise as functions of the exposure time. This allowed us to avoid structural bias in single-molecule localization microscopy (SMLM), which without correction is substantial even for scientific-grade, cooled cameras. In addition, our approach enables high-quality 3D super-resolution as well as live-cell time-lapse microscopy with cheap, industry-grade cameras. As our approach for camera characterization does not require any user interventions or additional hardware implementations, numerous correction algorithms that rely on camera characterization become easily applicable.


Subject(s)
Algorithms , Artifacts , Microscopy, Fluorescence/methods , Photons , Single Molecule Imaging
16.
Annu Rev Biophys ; 51: 301-326, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35119945

ABSTRACT

Super-resolution microscopy techniques, and specifically single-molecule localization microscopy (SMLM), are approaching nanometer resolution inside cells and thus have great potential to complement structural biology techniques such as electron microscopy for structural cell biology. In this review, we introduce the different flavors of super-resolution microscopy, with a special emphasis on SMLM and MINFLUX (minimal photon flux). We summarize recent technical developments that pushed these localization-based techniques to structural scales and review the experimental conditions that are key to obtaining data of the highest quality. Furthermore, we give an overview of different analysis methods and highlight studies that used SMLM to gain structural insights into biologically relevant molecular machines. Ultimately, we give our perspective on what is needed to push the resolution of these techniques even further and to apply them to investigating dynamic structural rearrangements in living cells.


Subject(s)
Single Molecule Imaging , Microscopy, Electron , Single Molecule Imaging/methods
17.
Mol Cell ; 82(5): 933-949.e9, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120587

ABSTRACT

BAX and BAK are key apoptosis regulators that mediate the decisive step of mitochondrial outer membrane permeabilization. However, the mechanism by which they assemble the apoptotic pore remains obscure. Here, we report that BAX and BAK present distinct oligomerization properties, with BAK organizing into smaller structures with faster kinetics than BAX. BAK recruits and accelerates BAX assembly into oligomers that continue to grow during apoptosis. As a result, BAX and BAK regulate each other as they co-assemble into the same apoptotic pores, which we visualize. The relative availability of BAX and BAK molecules thereby determines the growth rate of the apoptotic pore and the relative kinetics by which mitochondrial contents, most notably mtDNA, are released. This feature of BAX and BAK results in distinct activation kinetics of the cGAS/STING pathway with implications for mtDNA-mediated paracrine inflammatory signaling.


Subject(s)
DNA, Mitochondrial , Mitochondria , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Multimerization , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
18.
EMBO J ; 41(8): e108587, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35023587

ABSTRACT

The apoptotic executioner protein BAX and the dynamin-like protein DRP1 co-localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N-terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N-terminal region.


Subject(s)
Apoptosis , Dynamins , Apoptosis/physiology , Dynamins/genetics , Dynamins/metabolism , Mitochondria/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
20.
Nat Methods ; 18(9): 1082-1090, 2021 09.
Article in English | MEDLINE | ID: mdl-34480155

ABSTRACT

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Animals , COS Cells , Chlorocebus aethiops , Databases, Factual , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...